Comparative Gromov hyperbolicity results for the hyperbolic and quasihyperbolic metrics
نویسندگان
چکیده
منابع مشابه
Gromov Hyperbolicity of Denjoy Domains with Hyperbolic and Quasihyperbolic Metrics
We obtain explicit and simple conditions which in many cases allow one decide, whether or not a Denjoy domain endowed with the Poincaré or quasihyperbolic metric is Gromov hyperbolic. The criteria are based on the Euclidean size of the complement. As a corollary, the main theorem allows to deduce the non-hyperbolicity of any periodic Denjoy domain.
متن کاملGromov Hyperbolicity of Certain Conformal Invariant Metrics
The unit ball B is shown to be Gromov hyperbolic with respect to the Ferrand metric λBn and the modulus metric μBn , and dimension dependent upper bounds for the Gromov delta are obtained. In the two-dimensional case Gromov hyperbolicity is proved for all simply connected domains G. For λG also the case G = R n \ {0} is studied.
متن کاملDetours and Gromov hyperbolicity
The notion of Gromov hyperbolicity was introduced by Gromov in the setting of geometric group theory [G1], [G2], but has played an increasing role in analysis on general metric spaces [BHK], [BS], [BBo], [BBu], and extendability of Lipschitz mappings [L]. In this theory, it is often additionally assumed that the hyperbolic metric space is proper and geodesic (meaning that closed balls are compa...
متن کاملGromov hyperbolicity and the Kobayashi metric
It is well known that the unit ball endowed with the Kobayashi metric is isometric to complex hyperbolic space and in particular is an example of a negatively curved Riemannian manifold. One would then suspect that when Ω ⊂Cd is a domain close to the unit ball then (Ω ,KΩ ) should be negatively curved (in some sense). Unfortunately, for general domains the Kobayashi metric is no longer Riemanni...
متن کاملHyperbolizing Metric Spaces
It was proved by M. Bonk, J. Heinonen and P. Koskela that the quasihyperbolic metric hyperbolizes (in the sense of Gromov) uniform metric spaces. In this paper we introduce a new metric that hyperbolizes all locally compact noncomplete metric spaces. The metric is generic in the sense that (1) it can be defined on any metric space; (2) it preserves the quasiconformal geometry of the space; (3) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Complex Variables and Elliptic Equations
سال: 2009
ISSN: 1747-6933,1747-6941
DOI: 10.1080/17476930902999033